If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-14x-160=0
a = 3; b = -14; c = -160;
Δ = b2-4ac
Δ = -142-4·3·(-160)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-46}{2*3}=\frac{-32}{6} =-5+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+46}{2*3}=\frac{60}{6} =10 $
| s=10+8+6(13)+12(13)(8) | | -1/5y-4/3=4/3y-1 | | -8+u=9 | | -4v+8=-7v2 | | -5=-9q2 | | 4n-6+3n=7n+2 | | 8y2+3=0 | | 5x+11=126 | | 5n-7-3n=6n+17 | | 5+50+500=5x | | 2x3–13x2+6x=0 | | -t=9{t-10} | | 3w+11=71 | | 3w+11=17 | | 17=3-w/20 | | |x|+2=8 | | 2x2=-3 | | 31/5x=8 | | v/4-9=17 | | 20=10^x | | 7/12x=21/4 | | -9/5-4/3x=-3/2 | | 85=5y+15 | | 8r+7=-6r2 | | 11x+1=9x+2 | | |7x-1|=20 | | 2g-4=9 | | x*0,4=100-x | | 15.3+1h=1.3 | | 7/12x=51/4 | | 5g/3=15 | | -3=4+-1y |